Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein.

نویسندگان

  • Nicola Heim
  • Oliver Griesbeck
چکیده

Genetic calcium probes offer tremendous potential in the fields of neuroscience, cell biology, and pharmaceutical screening. Previously, ratiometric and non-ratiometric indicators of cellular calcium dynamics have been described that consist of mutants of the green fluorescent protein (GFP) as fluorophores and calmodulin as calcium-binding moiety in several configurations. However, these calmodulin-based types of probes have a series of deficiencies, such as reduced dynamic ranges, when expressed within transgenic organisms and lack of calcium sensitivity in certain targetings. We developed novel types of calcium probes based on troponin C variants from skeletal and cardiac muscle. These indicators have ratio changes up to 140%, K(d)s ranging from 470 nm to 29 microm, and improved subcellular targeting properties. We targeted the indicators to the plasma membrane of HEK293 cells and primary hippocampal neurons. Upon long lasting depolarization, submembrane calcium levels in hippocampal neurons were found to be in equilibrium with bulk cytosolic calcium levels, suggesting no standing gradient persists from the membrane toward the cytosol. We expect that such novel indicators using specialized calcium sensing proteins will be minimally interacting with the cellular biochemical machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi

Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in...

متن کامل

Highlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator

Genetically encoded fluorescent indicators for bioimaging are powerful tools for visualizing biological phenomena in specified cell types or cellular compartments. However, available gene promoters or localization sequences are not applicable for visualizing all expression events. Furthermore, a visualization technique focusing on single cells or cellular compartments is required for characteri...

متن کامل

Generation of transgenic marmosets expressing genetically encoded calcium indicators

Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to expr...

متن کامل

A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites

Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 14  شماره 

صفحات  -

تاریخ انتشار 2004